Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate change has the potential to disrupt species interactions across global ecosystems. Ectotherm–endotherm interactions may be especially prone to this risk due to the possible mismatch between the species in physiological response and performance. However, few studies have examined how changing temperatures might differentially impact species' niches or available suitable habitat when they have very different modes of thermoregulation. An ideal system for studying this interaction is the predator–prey system. In this study, we used ecological niche modeling to characterize the niche overlap and examine biogeography in past and future climate conditions of prairie rattlesnakes (Crotalus viridis) and Ord's kangaroo rats (Dipodomys ordii), an endotherm–ectotherm pair typifying a predator–prey species interaction. Our models show a high niche overlap between these two species (D = 0.863 andI = 0.979) and further affirm similar paleoecological distributions during the last glacial maximum (LGM) and mid‐Holocene (MH). Under future climate change scenarios, we found that prairie rattlesnakes may experience a reduction in overall suitable habitat (RCP 2.6 = −1.82%, 4.5 = −4.62%, 8.5 = −7.34%), whereas Ord's kangaroo rats may experience an increase (RCP 2.6 = 9.8%, 4.5 = 11.71%, 8.5 = 8.37%). We found a shared trend of stable suitable habitat at northern latitudes but reduced suitability in southern portions of the range, and we propose future monitoring and conservation be focused on those areas. Overall, we demonstrate a biogeographic example of how interacting ectotherm–endotherm species may have mismatched responses under climate change scenarios and the models presented here can serve as a starting point for further investigation into the biogeography of these systems.more » « less
-
Abstract Background Many snakes are low-energy predators that use crypsis to ambush their prey. Most of these species feed very infrequently, are sensitive to the presence of larger vertebrates, such as humans, and spend large portions of their lifetime hidden. This makes direct observation of feeding behaviour challenging, and previous methodologies developed for documenting predation behaviours of free-ranging snakes have critical limitations. Animal-borne accelerometers have been increasingly used by ecologists to quantify activity and moment-to-moment behaviour of free ranging animals, but their application in snakes has been limited to documenting basic behavioural states (e.g., active vs. non-active). High-frequency accelerometry can provide new insight into the behaviour of this important group of predators, and here we propose a new method to quantify key aspects of the feeding behaviour of three species of viperid snakes ( Crotalus spp.) and assess the transferability of classification models across those species. Results We used open-source software to create species-specific models that classified locomotion, stillness, predatory striking, and prey swallowing with high precision, accuracy, and recall. In addition, we identified a low cost, reliable, non-invasive attachment method for accelerometry devices to be placed anteriorly on snakes, as is likely necessary for accurately classifying distinct behaviours in these species. However, species-specific models had low transferability in our cross-species comparison. Conclusions Overall, our study demonstrates the strong potential for using accelerometry to document critical feeding behaviours in snakes that are difficult to observe directly. Furthermore, we provide an ‘end-to-end’ template for identifying important behaviours involved in the foraging ecology of viperids using high-frequency accelerometry. We highlight a method of attachment of accelerometers, a technique to simulate feeding events in captivity, and a model selection procedure using biologically relevant window sizes in an open-access software for analyzing acceleration data (AcceleRater). Although we were unable to obtain a generalized model across species, if more data are incorporated from snakes across different body sizes and different contexts (i.e., moving through natural habitat), general models could potentially be developed that have higher transferability.more » « less
-
Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko ( Correlophus ciliatus ) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C . ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C . ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads.more » « less
-
Abstract The outcomes of predator-prey interactions between endotherms and ectotherms can be heavily influenced by environmental temperature, owing to the difference in how body temperature affects locomotor performance. However, as elastic energy storage mechanisms can allow ectotherms to maintain high levels of performance at cooler body temperatures, detailed analyses of kinematics are necessary to fully understand how changes in temperature might alter endotherm-ectotherm predator-prey interactions. Viperid snakes are widely distributed ectothermic mesopredators that interact with endotherms both as predator and prey. Although there are numerous studies on the kinematics of viper strikes, surprisingly few have analyzed how this rapid movement is affected by temperature. Here we studied the effects of temperature on the predatory strike performance of rattlesnakes (Crotalus spp.), abundant new world vipers, using both field and captive experimental contexts. We found that the effects of temperature on predatory strike performance are limited, with warmer snakes achieving slightly higher maximum strike acceleration, but similar maximum velocity. Our results suggest that, unlike defensive strikes to predators, rattlesnakes may not attempt to maximize strike speed when attacking prey, and thus the outcomes of predatory strikes may not be heavily influenced by changes in temperature.more » « less
-
ABSTRACT Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator–prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes ( Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species ( Crotalus oreganus helleri and Crotalus scutulatus ) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15–35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.more » « less
-
Abstract Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.more » « less
-
Abstract Terrestrial animals move in complex habitats that vary over space and time. The characteristics of these habitats are not only defined by the physical environment, but also by the photic environment, even though the latter has largely been overlooked. For example, numerous studies of have examined the role of habitat structure, such as incline, perch diameter, and compliance, on running performance. However, running performance likely depends heavily on light level. Geckos are an exceptional group for analyzing the role of the photic environment on locomotion as they exhibit several independent shifts to diurnality from a nocturnal ancestor, they are visually-guided predators, and they are extremely diverse. Our initial goal is to discuss the range of photic environments that can be encountered in terrestrial habitats, such as day versus night, canopy cover in a forest, fog, and clouds. We then review the physiological optics of gecko vision with some new information about retina structures, the role of vision in motor-driven behaviors, and what is known about gecko locomotion under different light conditions, before demonstrating the effect of light levels on gecko locomotor performance. Overall, we highlight the importance of integrating sensory and motor information and establish a conceptual framework as guide for future research. Several future directions, such as understanding the role of pupil dynamics, are dependent on an integrative framework. This general framework can be extended to any motor system that relies on sensory information, and can be used to explore the impact of performance features on diversification and evolution.more » « less
-
Abstract Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade‐off between jump distance and acceleration as body size changes at both the inter‐ and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross‐sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomysspp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40–150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free‐ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross‐sectional area scaled with positive allometry. Ankle extensor tendon cross‐sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single‐strike predators, such as snakes and owls, likely drives this relationship.more » « less
An official website of the United States government
